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Size quantization effects observed in small semiconductor 
clusters are currently of great interest for potential nonlinear optic 
and photocatalytic applications.1-11 While materials based on 
H-VI semiconductors have been extensively studied, the prepa­
ration of IH-V size quantized semiconductors has been hampered 
by the much less-developed solution state chemistry in such 
systems.12 With the use of inclusion chemistry, we have succeeded 
in preparing small clusters of GaP in a crystalline, periodic en­
vironment of well-defined size and shape (zeolite Y). 

The reaction (Me)3Ga + PH3 -» 3CH4 + GaP was carried out 
within the pores of Na + /H + exchanged zeolite Y, by using various 
loadings of (Me)3Ga and different reaction temperatures and times 
with PH3. The synthesis is accomplished by vapor transfer of 
(Me)3Ga into dry zeolite and slowly warming to room temperature, 
resulting in CH4 evolution due to the reaction of (Me)3Ga with 
Bronsted acid sites in the zeolite. Excess (Me)3Ga and CH4 are 
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Figure 1. 121.65 MHz 31P MAS NMR of microdisperse GaP in zeolite 
NaY. The numerals indicate the different temperatures of PH3 treat­
ment of the (Me)3^Ga loaded samples. All samples contain comparable 
amounts of phosphorus. Chemical shifts (in ppm, vs 85% H3PO4) are 
indicated in the figure. For the broad signals, the center of gravity is 
calculated from the first moment. Minor unlabeled peaks represent 
spinning sidebands. 
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Figure 2. UV-vis spectra of bulk GaP and GaP included in zeolite NaY, 
treated at 225, 250, and 275 °C in PH3. 

pumped off at room temperature, and the (Me)3-^Ga loaded zeolite 
is treated with an excess of PH3 for several hours at a series of 
temperatures between room temperature and 400 0C. The product 
is cooled in vacuum and handled in an inert atmosphere thereafter. 
The color of samples vary with treatment temperature (white 
below 200 0C and yellow to orange between 200 and 300 0C), 
and this change is reflected in the systematic trend seen in the 
UV-vis spectra. Optical spectra in Figure 2 show a pronounced 
peak at 290 nm for the low-temperature sample and at 350 nm 
for the high-temperature samples. These absorption peaks are 
blue shifted from the band gap of bulk GaP (direct 466 nm, 
indirect 546 nm). We also note that the 250 0C and 275 0C 
samples absorb to the red of bulk GaP. This may be due to the 
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transformation of an indirect to direct gap, which could be induced 
by relaxation of the k-selection rule in the quantum confinement 
regime. This interesting explanation remains to be proven since 
the possibility of impurity absorption in the tail region has to be 
rigorously excluded. Bulk chemical analyses (Galbraith Labs., 
Knoxville, TN) demonstrate that at shorter contact times of PH3 

(3 h or less) the Ga:P ratio is large (11:1, at 300 0C, 3 h) but 
at longer times (12 h) the ratio is reduced (0.4:1), indicating the 
presence of unreacted (Me)3^Ga or phosphorus, respectively. 
X-ray diffraction patterns (both from a lab source and the syn­
chrotron) of samples treated at 300 °C and below show no re­
flections other than those of the zeolite host (with greatly modified 
relative intensities due to the inclusion); however, at PH3 treatment 
temperature of 400 0C, bulk GaP can be identified.13 

For lower annealing temperatures, the formation of micro-
disperse GaP was monitored by 31P MAS NMR. Figure 2 shows 
the spectra for four separate samples which had been exposed to 
(Me)3Ga by vapor transport and treated for 3 h in PH3 at various 
temperatures. The sample annealed at 200 0C shows several 
distinct signals (attributed to molecular precursor complexes) 
superimposed on a broad resonance (assigned to microdisperse 
GaP). As the temperature is increased, the sharp peaks disappear, 
and only the broad resonance, dominated by a distribution of 
isotropic chemical shifts, remains. Most notably, the center of 
gravity of the broad resonance is found significantly upfield with 
respect to bulk GaP (-143 ppm vs 85% H3PO4)14 and gradually 
shifts towards that position with increasing annealing temperature. 
For the 300 0C sample, the signal has sharpened significantly and 
resembles that of bulk GaP,14"16 whereas the NMR spectrum of 
the 400 0C sample confirms the formation of the bulk material. 

The EXAFS results,17 for a sample treated at 300 0C with a 
short PH3 contact time (i.e., 3 h), confirm the formation of small 
GaP clusters most likely located in the supercages of the zeolite.18 

Several different shells can be identified by fitting with adequate 
reference compounds. Ga is present in two distinct coordination 
environments. About 70% of the Ga is coordinated to the zeolite 
framework with an average Ga-O bond length of 2.04 A. A peak 
at about 2.5 A (uncorrected for phase shift) is interpreted as the 
corresponding Ga-Si/Al scattering from the host lattice. The 
second environment consists of GaP which is indicated in the 
EXAFS spectrum and the XANES (X-ray absorption near edge 
spectroscopy) region of the absorption edge. Three coordination 
shells of GaP were identified by the fitting procedure: a Ga-P 
shell at 2.37 A (coordination number = 0.9), a Ga-Ga shell at 
3.85 A (CN = 1.1), and a second Ga-P contribution at 4.56 A 
(CN = 1.5). These bond distances are consistent with those in 
bulk GaP. The small coordination numbers derived from the fit 
and the absence of any additional GaP shells indicate the formation 
of clusters with a size between 10 and 12 A. Further EXAFS 
and X-ray diffraction experiments are in progress to better elu­
cidate the structural nature of the species which are formed. 
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The results thus far indicate that we are able to synthesize small 
clusters of GaP within the pores of a zeolite and that we can 
change the optical properties by varying the synthetic conditions. 
The NMR results confirm the postulated chemistry and the 
suitability of this technique to monitor the transformation of 
microdisperse GaP during the synthesis. In conjunction with the 
UV-vis results and by analogy with the 77Se NMR studies of 
colloidal CdSe19 we interpret the chemical shift trend observed 
in Figure 2 in terms of a systematic change in the average ex­
citation energy of Ramsey's paramagnetic chemical shielding 
contribution as a result of size quantization.20 We therefore 
propose that, with proper calibration, solid-state NMR chemical 
shifts can be used to measure the average cluster sizes of such 
systems. 
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We recently reported the formation of the zwitterion 
(CO)5WNPhNPhC(OCH3)CH3 (1) as an isolable intermediate 
in the metathesis reaction of (CO)5W=C(OCH3)CH3 with 
photochemically generated m-azobenzene.1 Decomposition of 
1 under thermal or photochemical conditions resulted in formation 
of the organic metathesis product PhN=C(OCH3)CH3

2 and other 
compounds apparently derived from the low-valent tungsten 
nitrene complex (CO)5W=NPh (2).3a Many imido complexes 
have been reported in the literature.4'5 However, although species 
such as the low-valent doubly bonded 2 have been invoked in 
reaction mechanisms,3 they have not been directly observed. We 
now report that thermal decomposition of 1 in the presence of PPh3 

results in the trapping of nitrene complex 2 as its phosphine 
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